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A model of transfer processes of impurity atoms in a polysilicon-silicon system which describes the 

segregation of the impurity at the phase boundary is constructed. An algorithm is developed and numerical 

calculations are made for arsenic diffusion with allowance for a nonuniform defect distribution at the phase 
boundary. 

1. Introduction. In modern technologies for fabrication of silicon integrated circuits ion-implanted 

polysilicon St* layers are used as a source for diffusion of impurity atoms. This allows the creation of highly doped 

layers with few lattice defects and shallow pn junctions. A small number of defects in the doped region is achieved 
because the latter is formed as a result of thermal diffusion of the impurity and the radiation disturbances induced 

by ion implantation remain in the St* layer. On the other hand, the presence of a polysilicon layer substantially 

changes the character of thermal diffusion, providing, for instance, segregation of impurity atoms at the Si*-Si 
interface [1 ]. 

Moreover, the diffusion process in polysilicon considerably differs from that in a single crystal, due to the 

St* structure, which consists of randomly oriented crystal grains and an intergrain amorphous substance. In the 

course of thermal annealing the characteristic grain size increases, which allows their ordering with the formation 
of "columns" oriented from the substrate to the layer surface. The above circumstances have necessitated the 

development of a diffusion model of impurity atoms in the Si*-Si system and of software for modeling of the 
processes under consideration. 

2. Model. The existing diffusion models deal with diffusion both in a grain and at the integrain boundary 

[2], and take into account the influence of the growth rate of grains and impurity accumulation at the Si*-Si 

interface [3, 4 ]. It is assumed that at the polysilicon-silicon phase boundary two thin layers exist that considerably 
differ in their properties from the substance in the interior. Firstly, a layer of amorphous silicon, similar in 

properties to the grain boundary, is adjacent to the polysilicon. Its thickness la, which is about the thickness of the 

grain boundary l~un, is 0.5 ... 1.5 nm. Secondly, with any method of polysilicon deposition onto silicon a quasi-oxide 
SiOx layer is formed between them where 1.6 _< x < 1.8. Its thickness is from 0.5 to 1.0 nm. In [3, 4 ] it is assumed 

that due to segregation a considerable part of the total amount of the impurity (several percent in the case of arsenic 

diffusion) is accumulated in the first layer. This assumption is hardly probable, because the thickness of the 
amorphous layer is very small. Moreover, experimental data unambiguously indicate that the region where impurity 

segregation occurs extends for ~ 0.03/~m on both sides of the Si*-Si interface, i.e., by a distance considerably 
larger than la [1 ]. 

Our experiments concerned with ion-implanted arsenic redistribution in the Si*-Si system under short- 

time thermal annealing conditions confirm the data of [1 ]. Representative results of these experiments are shown 

in Fig. 1. A polysilicon 0.087/~m-lhick layer was grown on KEF-4.5 silicon substrates and 50 keV arsenic ions were 
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Fig. 1. Atomic distribution of arsenic after annealing at 950~ C T, Mm-3; x, 

/zm. 

Fig. 2. Calculated atomic distribution of arsenic after annealing at 1000~ 

(dots, measured total concentration values). 

Fig. 3. Calculated defect distribution in the polysilicon-silicon system. ~L,R,  

rel. units. 

implanted at a dose of 1500/~C/cm 2. Heat treatment was accomplished for 10 min at 950~ To prevent impurity 

evaporation, the structure was passivated by a SiO2 layer. The total concentration of impurity atoms was measured 

by the SIMS method. As seen in Fig. 1, the segregation region of the impurity extends by = 0.015/tm on both 

sides of the phase boundary. 

We construct a model of transfer processes of impurity atoms to describe adequately the impurity 

segregation near the Si*-Si interface. For this, we employ the results of numerical calculations of ion-implanted 

arsenic redistribution from [5 ]. As follows from [5 ], the impurity segregation in a near-surface region of the above 

dimensions can be described under the assumption that in this region a nonuniform distribution of point defects 

responsible for transfer of impurity atoms exists due to defect absorption by the semiconductor surface. Apparently, 

such a mechanism of segregation of impurity atoms is the best for describing the effects at the Si*-Si interface, 

since the polysilicon layer is an effective sink for inherent point defects existing in the monocrystalline silicon. 

Without loss of generality, we assume that the transfer of impurity atoms in silicon is accomplished via 

defects of the same kind, namely, either vacancies or inherent interstitial atoms. Then impurity diffusion in silicon 

can be described by the equation [5, 61 

T 
C t = V [D(x) V CC) + D(x) CCVz / z ] ,  (1) 

where C T = C A +  C, Z -- [ C - N +  ~ / ( C - N )  2 +  4n 2]/(2ni) ,  D(Z) = Di(1 +ill% +/62X 2)/(1 +t61 +/62), C = 
c X / c  x. 

Equation (1) is obtained under the assumption that the impurity transfer proceeds as a result of formation, 

migration and decay of the impurity atom - inherent point defect complexes. Assume that impurity transfer in 

polysilicon is accomplished by the same mechanism. Since within the scope of the present work we are interested 

in the macroscopic description of diffusion near the phase boundary we will not consider diffusion processes at the 

intergrain boundaries or in the grain interior separately but will employ the notion of the effective diffusion 

coefficient [7 ]. Based on this assumption, we describe diffusion in polysilicon by the equation 

C t = V [D* (V ( C'C* ) ], C-" = C m * / C m *  i �9 (2) 

Note, that Eq. (1) turns into (2) at ni >> C. Therefore, mathematically the problem has been formulated 

as follows. The diffusion process is considered in the region G = {0 < x < lx}, consisting of two phases, the phase 

boundary of which is specified by the coordinate Xph.b.  The diffusion process in each of the phases is described by 

Eq. (1), whose quantities have the superscripts L and R for the first (left-hand) and second (right-hand) phases, 

respectively. At the phase boundary these quantities arc related by the expressions: 
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1) equality of the electrochemical potentials of impurity atoms/~ on both sides of the phase boundary [8 ] 

~tl  ~:~ph.b-O R (3) 
= ~ [X=Xpb.b+0 ; 

2) the law of conservation of the amount of impurity atoms traversing the phase boundary 

D L (Z L) IV ( C LcL) + ? LcL VzL/z  L ]} X=Xph.b_ 0 = 

= D R (X R) IV ( C RcR) + C RcR vzR / z  R I I x=xp. b+0- (4) 

Introducing the notion of the effective coefficient of impurity segregation k s , condition (3) can be repre- 

sented as 

C T R  = k s , 

C T L  
X=Xph. b 

and the condition on the left-hand phase surface as 

w~ D L (X L) IV (~ LCt) + ~ LCt Vzt /Z  L l + W2 C L = W3 . 

(s) 

(6) 

It is seen from (6) that depending on the parameters Wi, i = 1, 2, 3 we can specify conditions of the first 

(WI = 0, 14"2 ;~ 0, W 3 ;~ 0), second (W 1 ;~ 0, W2 = 0) and third (W1 ;~ 0, W2 ;~ 0) kinds. 

The boundary condition in the interior of the semiconductor volume can be represented as one of the first 
kind 

c ~ (tx) = c b .  (7) 

and the initial condition for both phases as 

T c T (x, 0) = c o (x) ,  (8) 

where the function C~(x) in the case of doping by ion implantation represents a Gaussian or, more accurately, a 

Pearson-IV distribution with the parameters determined from tables [9 ], depending on the kind of ions, energy, 

and implantation dose. 

3. Equation of Defect Diffusion. To solve Eqs. (1) and (2) numerically, it is necessary to know the 

distribution of defects responsible for impurity diffusion in silicon and polysilicon. Therefore, these equations must 

be solved simultaneously with the diffusion equations of the corresponding defects. However, the characteristic 

feature of Eq. (1) is the presence of a concentration of defects in the neutral charged state in it, i.e., defects which 

are not affected by the internal electric field, The diffusion equation for such defects can be represented in the 

form [10]: 

Cxx - ~ / 2  + ~ g / 2  = o ,  ~= V d~ , Cg = (g/g~)/(~/~e). (9) 

Defect diffusion equation (9) does not contain a drift term and in the case of defect generation or absorption 

at the phase boundaries allows an analytical solution. For polysilicon, for the first-kind boundary conditions, it has 

the form 

~ L  AL L L = Cg + A 1 exp ( -  x / l  L) + A 2 exp (x/ lL),  (10) 

where 
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L C ?  exp (Xph.b//L) - ~ L  + ~ :  [1 - exp (Xph.b//L)] 
A 1 = - , 

exp (Xph.b//L) -- exp ( -  Xph.b//L) 

--L -- C ?  exp [1 - exp ( -  Xph.b//L)] L Cph:b (-- Xph.b IlL) .... g 
A 2 = 

e x p  ( X p h . b / ? )  --  exp ( -  Xph.b/l L) 

A similar solution for silicon has the form 

~ R  = CI g + AI~ exp ( -  x/lR), (11) 

where 

A1 R = - - R  (Cph.b - CI R) e x p  (Xph.b//R) . 

Substitution of analytical solutions (10), (11) into Eq. (1) makes it possible to solve only diffusion equation 

(1) of impurity in polysilicon and silicon layers instead of solving numerically a system of the diffusion equations 

for impurity atoms and intrinsic point defects. 

4. Calculation Scheme. Mathematically, the diffusion process considered is described by a quasilinear 

parabolic equation in a region consisting of two phases at whose boundary the solution and the coefficients undergo 

a discontinuity. To solve this equation, we employ the method of finite differences [11 ]. Conservative difference 

schemes are built using the integro-interpolation technique [12 ]. Due to the nonclassical statement of the problem 

- solution discontinuity - the suggested difference schemes are inhomogeneous. Because of the algorithmic 
requirement of coincidence of the discontinuity point with a network node, we have used nonuniform space steps 

[ 13, 14 ]. The use of weights allows application of various classes of schemes [ 11 ]. To seek a solution of the system 

of nonlinear algebraic equations, use is made of iteration methods [ 15 ]. 
We reduce the diffusion equations to a form convenient for constructing a calculation scheme. From the 

essence of the problem statement, C T= cT(c) .  Note also that X =z(C) and, consequently, D(Z) = Dr = I)(C). 
Let 

D l (C)  = D ( C ) ,  D 2(C) = D 1 (C) CC O-~--)-~/z(C). 

Then the diffusion model can be represented as 

ocT' (c") o (d)  o 'c') . . . . .  

Ot = O---x ~x ( ~ + D~2 (C'I) OX ) x E G X~Xph.b , 0 < t < T  (12) 

C TR (C R) = k s ' 

C TL (C L) X=Xph.b 
(13) 

L 0 L OC L = 
D1 (cL) -~x ( ~ LCL) + D2 (CL) OX X = X p h ' b -  0 

0 RcR ) R OC R = DR (CR) -~x ( ~ + D2 (CR) ~ 
X=Xph.b +0 

(14) 

0 LcL ) L OC L] WI DL (cL) ~x ( ~ + D2 (CL) -~x j + W2CL = W3' x = 0 ,  (15) 
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C R = C  b, x = l  x , (16) 

T 
C T(x ,  0) = C 0 (x ) ,  x E G ,  (17) 

where r/= L at x < Xph.b; 77 = R at x > Xph.b- 

In the modeling region G we introduce a nonuniform network: 

A 

..... N, xo=O, x N - - , x , * , = x i - X , _ l } .  

The phase boundary coordinate Xph.b of the two phases is known; therefore, a nonuniform network can be always 
chosen such that the point xph.b is its node. 

The time network is also made nonuniform with a monotone increasing step rj 

~ =  {tj,  j = o ,  1 ..... jo, to--O,  ,jo = r ,  ~j= t j -  t;_,}. 

Write a balance equation for Eq. (12) in a rectangle x i _ 1 / 2  <- x <- x i  + ] / 2, t j  <_ t <- t j  + l , x i -  l / 2 = x i  - O .5h i ,  

Xi+I /2  = Xi + 0.5hi+l ,Xi  ~e Xph. b 

Xi+l/2 
f [C "l  (C'7)[t=tj+l 

x i - 1 / 2  

tj+l 

-- C Ttl (C~)lt=tjl dx = f [w (xi+l/2,  t) - r (Xi_ l /2 ,  t)l dr, 
9 

(18) 

where 

0 ,7C,1 ) OC 'I 
o) (x, t) = D 7 (C 't) ~x ( ~ + o~2 (c'l) Ox 

Next we approximate the integrals and derivatives entering the balance equation: 

xi +~ / 2 cTtl 
(C 'l) dx - 0 . 5  (h i + hi+l)  C Tt/ (C~l)[x=xi 

x i -1 /2  

~,_ ,~-~  (c7)( ~"c")~,; + 4 (~) cL-, 

1 tj+l f+l  
f oJ (xi_l /2 ,  t) d t - o % _ l / 2  + (1 - o) ~ / -1 /2 ,  

rJ +l tj 

where - i s  the approximation sign; a, 0 _< a _< 1 is a numerical parameter. The coefficients aT, a~ are expressed in 

terms of DT(C'I), D~(C '~) with the aid of model functionals [11 ]. 
After introducing the obtained expressions into (18) and substituting y for C we arrive at a difference 

scheme for the network function y(xi, ty): 

cT" ( ~ " )  -- cT" (Y") = A ( ~ "  + (1 - o) YT,  x e f ib ,  x * xp~b, 0 -< t < r .  
rj+l 

(19) 

Here 

Ay, = (~7 (;) ( 8 T% ); + (4 (;) ~ ) ; .  

Now we supplement Eq. (19) with additional conditions by approximating matching relations (13), (14), 

boundary and initial data (15)-(17) with the following expressions: 
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^R 
C TR ( Y ) f = k s ' 

cTL ( ; L )  
(20) 

aco [cTL ^L  cTL "-L 
L (~xL) + (1 - a) coL ( : )  + 0.5hNpb.b/TJ+l ( YNP h,b ) _ (YNph. b ) ] = 

O'c0R ( ; R )  + (1 -- a) COR ( : )  _ 0.ShNph.b+l/V]+l [cTR(;NRph.b)_CTR (YNph.b)R ] , (21) 

L ^L ^L 
Wl Iacoboun ( Y0 ) + (1 -- a) cobounL (Yo) I + W2 [a Y0 + (1 - 

[cTL ^L  cTL = Wz + 0"Shl Wl /~]+  1 ( YO ) - (yL) l ,  

o) = 

(22) 

R 
y : C b ,  x = l x ,  0 < t < T ,  (23) 

where 

y(x,  0 ) = C  O(x) ,  x e ~ h ,  (24) 

L --L L L o9 ( : )  = a L (yL) ( C yL)~ + a2 ( : )  y.s , 

R R R (25) w (yR) = a R (yR) ( ? R : )  x + a2 ( : )  Yx '  

L ( : )  L(yL) --L L L = ( C y )x,O + a2 (yL) L coboun al Yx,O �9 

To determine ~'= y/+l = (~ ,  ~ )  on a new layer, we use the system of nonlinear Eqs. (19)-(24). To solve 
the latter, we employ the following iteration technique: 

k k k+l k k+l 
cTq ( yr/ ) + (cTq ( yq ))' ( y~? -- yq ) _ r]+l aA ( y ) = C Tq (yr/) + V]+l (1 - or) Ay,  (26) 

k+l k 
R 

Y _ k s F L ( : )  
k+l k 
yL : ( : )  

(27) 

L ~7CO 

R ~Grco 

k+l L L [cTL k L 
( YNph. b ) + (1 - a )  L (YNph.b) + 0.5hNph.b/ZJ+l ( YNP h.b ) + 

k L k+ 1L k L cTL L 
+ (C TL ( YNph.b ))' ( YNph.b -- YNph. b ) -- (YNph.b) ] = 

k+l R 
YNph. b ) + (l Or) COR R [cTR k R -- (YNph.b) + 0.Shgph.b+l/rj+ 1 ( YNph.b ) + 

k n k+lR k R cTR R 
+ (C TR ( YNph.b ))' ( Ygph.b -- YNph. b ) -- (YNph.b) ] ,  

(28) 
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k + l  k+ l  
L L L 

W1 [tTt~ ( Yl ) + (1 -- (7) O)boun e (ylL) ] + W 2 [(7 yL + (1 -- or) 3'0] = W3 + 

k k k+l  k 
L (cTL L L (cTL + 0"Shl WI/'~j+I [cTL ( YO ) + ( yL ))' ( YO -- YO ) -- (yL))  , (29) 

k + l  
R 

YN = Cb �9 (30) 

Here 

k + l  k k + l  k k + l  
t/ A (  y ) = ( a ~ ( y r / ) ( C  r/ yr/ ) ~ ) ~ +  ( a ~ ( y , / )  ( y ~ ) ~ .  

k + l  k + l  k + l  
L Similarly, difference approximations (25) are calculated: coL(y L ), wR(y R ) and ~Oboun( ~ ). 

The functions F L, F g are determined from the relations 

c TL (c13 = cr  / (cL) ,  c TR (c  R) = c R F R 

As the initial iteration, we take the function y _- (yL, yR) of the preceding time step, Y~ = 3i . Difference 
equations (26), (28) are reduced to the form 

k + l  k + l  k + l  
L yL L 

Ai Yi-1 - Ci + Bi Yi+l = - Fi , i = 1, 2 . . . . .  Nph.6 - 1,  

k + l  k+l  k + l  k + l  

L R (31) Ai Y i - 1 - C i (  yL + yR i ) + Bi Yi+I = - Fi,  i =  N p h . b ,  

k + l  k + l  k + l  
R y/R R 

Ai  Yi -1  - Ci  + Bi  Yi+l  = - F i ,  i = Nph.b + 1, Nph.b + 2 . . . . .  N .  

Taking into account (27) and supplementing (31)kwith the conditions at the boundaries (29), (30), we 
obtain a system of three-point linear algebraic equations for Yi , i = 0, 1 .... N which is solved by the factorization 
method [11, 15 ]. Iteration is performed until the condition 

k + l  k k 

] Y i - - Y i l  < e l  [Yi + e 2 ,  i = 0 , 1  . . . . .  N 

is fulfilled. 

Some aspects of the suggested numerical method were checked on model problems, whose solution can be 
estimated with sufficient reliability. Variation of time and space steps, weights, iteration parameters makes it 
possible to control calculations. 

An additional toot for calculation control is checking the fulfillment of the relation 

lx 
X?'bcTL dx  + f c T R  d x  = c o n s t  

0 Xph.b 

in the case when an impurity flow across the surface is absent. For the problem considered below the change in 
the integral did not exceed 1.5%. 

5. Results of Numerical Calculations. Representative results for the redistribution of ion-implanted arsenic 
in the polysilicon-silicon system are shown in Fig. 2. For experiments, use was made of KEF-4.5 substrates on 
which a 0 .087/xm thick polysilicon layer was grown and implantation of 50 keV arsenic ions at a dose of 1500 

994 



~uC/cm 2 was accomplished. Heat treatment was conducted at 1000~ for 10 min. To prevent impurity evaporation, 

the structure was passivated by a SiO 2 layer. 

In calculations, we used the following values of quantities characterizing the initial impurity distribution 
= T _  D ,  = = and the transfer of impurity atoms: Rp -- 0.038/~m; ARo 0.014 pm; Sk = 0.45 [9 ]; C m - 2.69.109 m; D L 

2.5" 10 -6 p m 2 / s e c  [161; D i = D~/= 1.69-10 -7 am2/sec [16 ]; n i = n R = 8.85-106/zm-3; t51 = flf  = 7.3; r2 = fl~ = 

0.13. 

To determine fll and fix,  we used data on the concentration-dependent diffusion coefficient of arsenic [17 ]. 

For this purpose, they were represented as a dependence on the electron concentration but not on the total 

concentration of the impurity. The parameters fll and r2 were determined from the condition of the best agreement 

of the calculated concentration dependence of the diffusion coefficient D(Z) and the experimental data. The 

concentration dependence of the diffusion coefficient was recalculated using the empirical formula for the total 

impurity concentration deried in [18 ]: 

C T = C A + C = ~ C  4 + C ,  

where fla = 1.00- 10 -25/~m 9 at 1000~ This formula was also employed to describe the cluster formation of arsenic 

in silicon by solving impurity diffusion equation (1) numerically. 

To describe the states of the defect subsystem, we used the following set of parameters: in polysilicon - 
~*  ~ L  ~* NL ~ ~* / . =  /L = 0.015 #m; C a --C s = 5.0, Cph.b =Cph.b =0.05, Cg = 1.0; in s i l i con -  l =  /R = 0.015 ~m; Cph.b = 

M R 
Cph.b ---- 3 .0 ;  C ;  = 4 .5 .  

The calculated defect-distributions in silicon and polysilicon used in modeling the process of arsenic 

redistribution (see Fig. 2) are given in Fig. 3 (for the neutral charged state). 

As is seen from Fig. 2, the calculation results are in fair agreement with the experimental data. Moreover, 

the suggested model adequately describes the phenomenon of "ascending" diffusion on near-surface regions on both 

sides of the Si*-Si phase boundary. 

Good agreement with experiment is observed both in silicon and polysilicon, though we introduced the 

notion of the effective diffusion coefficient to describe the transfer processes in polysilicon. The agreement with 

experiment allows one to use this model as a basis in development of a modeling program for the technology of 

fabrication of bipolar transistors of large-scale silicon integrated circuits by ion implantation in polysilicon layers. 

Moreover, this model and developed software can be used to describe other transfer processes at the phase 

boundaries of two phases, for instance, to model the process of superlattice disordering in complex semiconductors 

[191. 

N O T A T I O N  

C T, total atomic concentration of the impurity; C A and C, concentrations of the impurity atoms bound into 

clusters and of the substitutional atoms, respectively; Z, electron (hole) concentration reduced to n i in the case of 

doping by an n-type (p-type) impurity; rli, concentration of intrinsic charge carriers; N, concentration of the 

impurity with opposite type of conductivity; C*, impurity concentration in polysilicon; C b, background volume 

atomic concentration of the impurity in the semiconductor; l x, coordinate of the right-hand boundary of the 

modeling region; D(Z), effective diffusion coefficient of the impurity in silicon; D*, effective diffusion coefficient of 

the impurity in polysilicon; Di, self-diffusion coefficient of the impurity atoms; /61 and f12, empirical constants 

describing relative contribution to the diffusion of singly and doubly charged defects as compared to the contribution 
• 

of defects in the neutral charged state; Cm, concentration of intrinsic point defects of species m in silicon in the 

neutral charged state; Ci, thermal-equilibrium concentration of this species; C m , concentration of point defects of 

species rn* in polysilicon responsible for transfer of impurity atoms; C'm* i, thermal-equilibrium concentration of 

these defects; d and 3, effective diffusion coefficient and mean lifetime of defects, respectively; g, generation rate 

of these defects per unit volume of the substance; gi and T i thermal-equilibrium values of g and r, respectively; Rp 

and ARp, mean projective range of the ion path and the path straggling, respectively; S k, asymmetry of the impurity 
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T distribution profile; Cat , impurity concentration at the maximum of the Gauss distribution; l, mean diffusion path 
N L 

length of defects; C~ a n d  C p h . b  , defect concentration in polysilicon on the surface and at the phase boundary, 
respectively, normalized to thermal-equilibrium defect concentration Urn* i in polysilicon; l L, mean path length of 

~ R  defects in polysilicon; Cph.b and C f ,  concentration of neutral point defects in silicon at the phase boundary and 
at x = Ix, respectively, normalized to the thermal-equilibrium concentration of these defects C/X; T, heat treatment 

time; t, current time. Subscripts: ph. b, phase boundary; s,surface. Superscript: s, segregation. 
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